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Received 9 November 1989. in final form 6 March 1989 

Abstract. The problem of hydrogen atoms in an external uniform magnetic field (quadratic 
Zeeman effect) is studied by means of perturbation theory. The power series for the 
ground-state energy in terms of magnetic-field strength B is divergent. Nevertheless, it is 
possible to induce convergence of this divergent series by applying various non-linear 
transformations, such as those of Shanks (e ) ,  Levin ( 1 ,  U, U )  as well as the present ( U )  

algorithm. These transformations of originally divergent perturbation series yield new 
sequences, which then converge. The induced convergence is, however, quite slow. A new 
hybrid Shanks-Levin non-linear transform is devised here for accelerating these slowly 
converging series and sequences. Significant improvement in the convergence rate is 
obtained. Agreement with the exact results is excellent. 

The quadratic Zeeman effect, which is associated with the hydrogen atom in a uniform 
magnetic field, represents one of the fundamental non-separable two-dimensional 
problems of quantum mechanics (Ruderman 1975). A large number of methods have 
been used to compute the energy values of many low-lying states as functions of 
magnetic-field strength B (Garstang 1977, Avron et a1 1979, Wunner et a1 1983, Delande 
and Gay 1981, Clark and Taylor 1982, Ciiek and Vrscay 1982). Among the most 
versatile are the variants of the PadC-Bore1 summability methods recently studied in 
details by Popov and Weinberg (1982) as well as by Le Guillou and Zinn-Justin (1983). 
However, to date the most extensive is the work of Rosner et a1 (1984) who obtained 
highly accurate energies from the Schrodinger variational principle. Alternative vari- 
ational estimates of the exact energies can also be found from a matrix diagonalisation 
of the Hamiltonian in a complete Sturmian basis representation of the S0(4,2) Lie 
algebra (Ciiek and Vrscay 1977, Gerry and Laub 1982). 

The Rayleigh-Schrodinger quantum mechanical perturbation theory represents a 
quite natural starting point for studying the energy spectra of an atom interacting with 
external static fields. Powerful algorithms have been developed for fast computation 
of arbitrary orders in several perturbation series (Avron et a1 1979, Adams er al 1980, 
Vrscay 1985). With these algorithms at hand, the relevant perturbation series could 
be readily summed up to an arbitrary order for a given value of the external magnetic- 
field strength B. This cannot be accomplished, however, since addition of partial sums 
yields divergent results. This problem is said to be in the class of asymptotic perturba- 
tion series (Reed and Simon 1978). 

The summability problem of diverging series or sequences plays an important role 
in rigorous calculus (Knopp 1947, Hardy 1956). There are many techniques for 
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accelerating slowly converging series or even inducing convergence of some diverging 
expansions (Wimp 1981, Brezinski 1977). Some of these accelerators have been shown 
(Brezinski 1977) to be much more efficient than various PadC-type generalisations of 
the continued fractions which, nevertheless, received most attention in physics (Baker 
and  Gammel 1970). In particular, the u-transform of Levin (1973) has emerged from 
the considerable mathematical research literature (Brezinski 1977, Blakemore et a1 
1976, Fessler et a1 1983, Smith and Ford 1979, 1982) as one of the most useful methods 
but, with few exceptions (Thakkar 1978, Tanner and Thakkar 1982, Weniger er a1 1986, 
BelkiC and  Taylor 1986, 1987, BelkiC 1988), has remained virtually unexplored by 
physicists. It is, however, important to examine the usefulness of the non-linear 
Levin-type algorithms for the quantum mechanical asymptotic perturbation theories, 
for which the usual Pad6 approximant is known to be insufficient. The purpose of 
such a n  examination, which is presently carried out for the Zeeman effect as an  
important first illustration, is to render the perturbation theory into a practical tool 
for computation of atomic spectra. This systematic theory is, however, useless without 
suitable accelerators due  to its slow convergence and/or marked divergence. 

Let {A, , }  be a sequence of partial sums which converges to its limit A. Further, let 
F be a transformation which maps {A, , }  into another sequence {B,,}. Thus, mapping 
F will represent an  accelerator, i.e. sequence {B,,} converges to A faster than {A, , }  if 
the following necessary and  sufficient condition is fulfilled: (B,, - B ) / ( A , ,  - A )  + 0, as 
n +ax Here it is assumed that the new sequence { B,,} also converges to the same limit 
B = A. Transformation F will be non-linear if its coefficients depend upon A, e.g. the 
so-called e-algorithm of Shanks (1955), who employed operators ek to convert sequence 
{A, , }  into {B , , } ,  i.e. ek(A, , )  = &,,(f l5  0, n 5 k). The general term in the kth-order 
transform Bk,, of A,, can efficiently be computed from the recursive &-algorithm of 
Wynn (1956), i.e. e , (A, )  = E ; : ’ ,  where 

= &;y”+ 1 / ( & j m + l ) - & ( , m ) )  m , s a O  (1) 

with E?:) = 0, e r )  = A,, E:::, = l/es(AA,) and A is the forward difference operator: 
Ax, = x J + ]  - x J .  In applications, we shall employ the diagonal Shanks ed-transform 
which is defined by ed ( A , )  = B,, . 

When {A, , }  is the sequence of partial sums of a power series, the two-dimensional 
array E$: )  yields the upper half of the well known Pad6 table. The present computation 
is concerned with the partial sums of power series expansions, and we shall employ 
Wynn’s &-algorithm ( l ) ,  which is known to be stable (Wynn 1966, Blakemore et al 
1976). Also presently studied are the non-linear Levin t ,  U and U transforms. 

We shall hereafter be dealing with partial sums A,, =E:=, uJ of a given infinite 
series aJ, where n 2 1 and A,  -$ A as n + 00. It is assumed that sequence { A , }  
(11 5 1 )  exhibits prohibitively slow convergence, which prevents any useful addition of 
partial sums in searching for the limiting value A. Straightforward addition of a,, can 
also lead to significant loss of accuracy due to the accumulation of round-off errors, 
especially for alternating series. Furthermore, the original sequence { A , }  could be 
divergent, as is usually the case in quantum mechanics, and the concept of ‘antilimit’ 
should be invoked along the lines of the work of Shanks (1955). Therefore, a n  
alternative method is sought for extracting the correct limiting value A. To achieve 
this goal, consider the following model sequence for {A, , } :  
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where C,, are unknown coefficients and R, is a non-zero 'estimate' of the remainder 
A,, -A. The standard application of the Vandermonde determinants will eliminate C 
from system ( 2 )  of k + 1 linear equations with the final result: 

where C:" = (-k),[( n + j ) / ( n  + k ) I k - ' / j !  and ( x ) ,  is the Pochhammer symbol, i.e. 
( x ) ,  = x(x+ 1)(x+2).  . .(x+ n - 1). The approximation to the limit A, based upon 
inclusion of n terms, is XnT1 = x d ( A n ) .  Transforms x d ( A Z n )  and ed(A,) are not strictly 
analogous to each other because they contain different number of terms A,,. However, 
scaling A,, += A,+1 implies that both &(A2,,) and el(A,)  depend upon the same 2n + 1 
terms A l ,  A*,  . . . A*"+,, where e&(A,+,) = ed(Ak) and A: = Ai+l( i20) .  This enables 
direct comparisons between the numerical results obtained by means of the xd ( A2,) 
and e&(A,) transformations. The remainder R, is an adjustable function which, 
however, should fulfil the requirement R a A , - A  up to a constant factor, which 
cancels in the quotient of (3) .  In this way, transformation x k ( A n )  will represent an 
accelerator method for sequence {A,,}. It is seen from (3) that the general term Xk," 

of the new sequence is a weighted combination of the original A. Hence non-linear 
transformations are obtained from (3 )  by choosing the remainder R, to be dependent 
upon a,(=A,-A,-, =AA,-l). 

Levin's (1973) three non-linear t, U and U transformations can all be obtained from 
(3) by choosing remainder R, to be equal to a,, qa, and aqaq+l /Aaq,  respectively. Thus 

Motivation for these selections is best seen by assuming that the Shanks e,-transforma- 
tion of the kth order is a good approximation to the limiting value. For example, the 
useofoperator e ,  i.e. e,(A,) = A, - a,a,+,/Aa, implies that R, = A ,  - A  = A, - e,(A,) = 
a,u,+,/Au,, which is the remainder of the u-transformation ( 6 ) .  

We shall presently improve the remainder estimate R, by using the second-order 
Shanks operator, i.e. e2(A,) = A, - D, - Db, where 0, = a,+l /Aaq+l ,  0: = 
ubab+l / (ab+ la :  -a:+,ab) ,  a: = a,a,+z- a i + ,  and a: = Aa,+, -Aa,. Hence, choosing 
R 4 4  = A - A  = A, - e,(A,) = D, + Db we presently obtain a new non-linear algorithm 
which is henceforth called the w-transformation. i.e. 

In analogy to Xd(An) we shall define td(An), Ud(An), Ud(An) and wd(An) by t d ( A n ) =  
T n , 1 ,  Ud(An) = Ud(An) = V,,l and wd (A , )  =a,,, . Recursive algorithms for the t, 
U, U and w transformations can all be obtained from the common equation (3 )  following 
Fessler et ul (1983). 
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As an  introductory illustration, let us consider the Maclaurin expansion, i.e. Z(x) = 
1 - 1 !x + 2!x2 -3x3 + 4!x4 - . . . , which is strongly divergent for every x f 0. Applying 
the t, U, u and w transforms here, we have obtained a rapidly converging series, as is 
evident from table 1. All of these four non-linear transformations are efficient in 
converting divergent into convergent series for Z(1), and agreement with the exact 
result to eight decimal places is obtained by using only seven or eight terms. It is seen 
from table 1 that the present w -  and Levin u-transformations yield results which are 
very close to each other. The exact result I (  1) = exp( l )E , (  1) = 0.596 347 361 is available 
from an  alternative expression in terms of exponential integral E,(1) given by 
Abramowitz and Stegun (1982, table 5.1). Also employed in the present computation 
of I(1) is Wynn’s &-algorithm (1) for the computation of the diagonal Shanks ed- 
transformation. This latter method is also able to induce convergence of series I (  l),  
but the exact limiting value is approached by eight terms to only two decimal places, 
i.e. 0.596 57 (see table 1). We shall presently attempt to enhance the rate of convergence 
of Shanks’ sequence by submitting it to the Levin u-accelerator. The new hybrid 
Shanks-Levin non-linear transformation converges very rapidly and with inclusion of 
five terms reaches nine exact decimal places 0.596 347 361 as opposed to only two in 
the original Shanks sequence (see table 1). Similar conclusions are also drawn from 
the application of the U and w transforms to the Shanks sequence (&-algorithm), which 
is given in the seventh column of table 1. These remarkable improvements demonstrate 
the power of the hybrid non-linear Shanks-Levin transforms. This also indicates that 

Table 1. Non-linear transformation of the Maclaurin expansion I ( x )  = 
1-1!x+2!x’-3!xZ+4!x‘- . . .  at x = l .  The kth partial sum is labelled by A, with the 
convention A,, = 0. The results of the Levin I - ,  U -  and  v-transformations are  listed in the 
third, fourth and  fifth columns, respectively. The Shanks transformation yields the sequence 
shown in the seventh column. The sequences in the sixth and  eighth columns are d u e  to 
the present w-  a n d  hybrid-transformations, respectively. The data  of ou r  hybrid method 
resulted in the application of the Levin c-transformation to the Shanks sequence of the 
seventh column. The Shanks sequence is generated recursively by means of the &-algorithm 
( 1 ) .  As to the I, U, U, w, as  well as  hybrid, transforms, explicit formulae (4)-(6) and  their 
recursive analogues are  presently found to yield the same result. In the actual computation 
of the hybrid Shanks-Levin array, the Shanks sequence is taken in double  precision (32 
digits), and  not in the form of rounded numbers of the seventh column. Moreover, the 
seventh column contains only the first few elements as  an  illustration. To obtain the hybrid 
Shanks-Levin array in a general case, our  program automatically generates the Shanks 
sequence of the required size for  a given set of partial sums.  The exact result I (1)  = exp(  1 )  
€ , ( 1 )  =0.596347 361 is available from the exponential integral €,(1) as  given by Levin 
(1973) and  Abramowitz a n d  Stegun (1982, table 5.1). 

Hybrid 
k A, fd (.A2, -> )  U,, ( - >  1 U,/ ( A z k  -? )  w,! ( - ? )  e: ,  (A ,  -, 1 ( e-  u) 

Exact:  0.596 347 361 
1 1 .o 
2 0.0 0.615 384 6 0.571 428 6 0.600 000 0 0.597 561 0 0.666 666 7 0.597 302 2 
3 2.0 0.596 139 0 0.595 362 8 0.595 940 3 0.596 157 5 0.615 384 6 0.596 353 3 
4 -4.0 0.596 330 6 0.596 399 2 0.596 344 7 0.596 357 6 0.602 739 7 0.596 347 35 
5 20.0 0.596 349 4 0.596 346 1 0.596 348 8 0.596 348 9 0.598 802 4 0.596 347 361 
6 -100.0 0.596 347 2 0.596 347 28 0.596 347 2 0.596 347 2 0.597 383 4 
7 620.0 0.596 347 37 0.596 347 38 0.596 347 37 0.596 347 37 0.596 816 6 
8 -4420.0 0.596 347 362 0.596 347 360 0.596 347 362 0.596 347 362 0.596 572 1 
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the original Shanks array inherently contains the exact answer in the first several terms, 
but is not efficient enough in making this fact transparent. 

Finally, we shall return to the Zeeman effect, whose perturbation series of the 
ground-state energy is given by 

r: 

E(au)  = -;+ E'"'(y2/8)".  
n = l  

Here, y is the coupling constant which is, with the adoption 
the magnetic-field strength B. Expansion coefficients E'") 
within twelve decimal places of accuracy by means of the 

of atomic units, equal to 
have been computed to 
large-order perturbation 
1982). The infinite series theory and the S0(4,2)-Lie algebra (Ciiek and Vrscay 1977, 

in (8) is markedly divergent. Direct application of Shanks ed-transform to the original 
Zeeman perturbation sequence produces slowly convergent series for larger values of 
y (see table 2(b)). The same is true for the Levin-type t-, U-, U- and w-transforms. 
However, substantial improvement in the convergence rate is presently obtained by 
employing our hybrid Shanks-Levin algorithm, where the Shanks array ed(Ak) is 
submitted to the Levin o-transform (see tables 2(a, b)). The case with much larger 
values of y covering the magnetic fields, which is of utmost importance in astrophysics 
(Garstang 1977, Le Guillou and Zinn-Justin 1983), has not yet been studied but certainly 
merits a careful investigation by hybrid-type non-linear transformations. In a test run, 
we have verified that the present method is also useful in other divergent quantum 
mechanical perturbation series (anharmonic oscillator, Stark effect, charmonium model 
potential, etc). The results of such a study, together with many other model sequences 
and series, will be reported shortly. 

In conclusion, we have demonstrated that the divergent perturbation series can 
successfully be treated by means of the new hybrid non-linear transformations of 
Shanks-Levin type. These transforms are very efficient in mapping the slowly converg- 
ing series into series which rapidly converge, and/or converting the divergent into 
convergent sequences of various functions and numbers. Universal methods for 
accelerating a wide general class of sequences cannot exist. Hence, it is natural to 
devise certain new hybrid transforms by combining the accelerators which are expedient 
for various types of convergence. Our investigation of the divergent series in the case 
of the Zeeman effect clearly illustrates that the new non-linear hybrid Shanks-Levin 
type transforms represent substantial improvements over both the Shanks and Levin 
accelerators considered separately. The hybrid Shanks- Levin non-linear accelerators 
significantly enhance the rate of convergence of slowly converging sequences and 
series. A sample of markedly diverging power series which we have investigated here 
is efficiently 'summed' up beyond their radius of convergence (analytic continuation). 
Various other combinations are possible, yielding different hybrid accelerators. For 
example, one could employ the Levin u-transform twice (or even more), i.e. in the 
first step, a given diverging series is mapped into rational approximations by means 
of the Levin u-transformation. This resulting sequence of u-transforms, however, may 
be slowly converging and, as such, could, in the second step, again be submitted to 
the u-algorithm of Levin. A similar procedure could be done with Levin's U- or with 
Brezinski's &transforms. Thorough numerical investigation is, however, required to 
select those hybrid accelerators which are useful for detailed applications in various 
areas of atomic and molecular physics, e.g. evaluation of multicentre integrals (Weniger 
er a1 1986, BelkiC and Taylor 1986, BelkiC 1988), the partial wave treatment of 
electron-atom collisions (Whelan and Piraux 1987), etc. Further work is required to 
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Table 2. The Zeeman perturbation series for the ground-state energy of atomic hydrogen: 
E(a.u)  = -$+Z:=, E'"' (  y2/8)". For details about the Shanks ( e )  and hybrid Shanks-Levin 
( e - o )  transformations, see table 1. Exact results are obtained from the Schrodinger 
extremum variational principle by Rosner et a /  (1984) with uncertainty as to the sixth 
decimal place. 

Exact (Rosner Hybrid 
y er a /  1984) k e,(A,) k % ( A k )  k ( e - v )  

( 0 )  

0.1 -0.497 527 

0.14 -0.495 198 

0.2 -0.490 382 

0.3 -0.479 187 

( b )  
0.4 -0.464 606 

0.5 -0.447 21 t 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 

-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 

-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 

-0.490 376 
-0.490 381 
-0.490 382 
-0.490 382 
-0.490 382 
-0.490 382 
-0.490 382 
-0.490 382 

-0.479 103 
-0.479 177 
-0.479 185 
-0.479 186 
-0.479 186 
-0.479 186 
-0.479 187 
-0.479 187 

-0.464 152 
-0.464 516 
-0.464 579 
-0.464 596 
-0.464 601 
-0.464 603 
-0.464 604 
-0.464 605 

-0.445 728 
-0.446 809 
-0.447 062 
-0.447 144 

9 
10 
11 
12 
13 
14 
15 
16 

9 
10 
11 
12 
13 
14 
15 
16 

9 
10 
11 
12 
13 
14 
15 
16 

9 
10 
11 
12 
13 
14 
15 
16 

9 
10 
11 
12 
13 
14 
15 
16 

9 
10 
11 
12 
13 

-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 
-0.497 526 

-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 
-0.495 198 

-0.490 382 
-0.490 382 
-0.490 382 
-0.490 382 
-0.490 382 
-0.490 382 
-0.490 382 
-0.490 382 

-0.479 187 
-0.479 187 
-0.479 187 
-0.479 187 
-0.479 187 
-0.479 187 
-0.479 187 
-0.479 187 

-0.464 605 
-0.464 605 
-0.464 605 
-0.464 605 
-0.464 605 
-0.464 605 
-0.464 605 
-0.464 605 

-0.447 206 
-0.447 207 
-0.447 208 
-0.447 209 
-0.447 209 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

-0.497 526 
-0.497 526 
-0.497 526 

-0.495 198 
-0.495 198 
-0.495 198 

-0.490 382 
-0.490 382 
-0.490 382 

-0.479 187 
-0.479 187 
-0.479 187 

-0.464 605 
-0.464 605 
-0.464 605 

-0.447 210 
-0.447 21 1 
-0.447 21 1 

-0.447 176 
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Table 2. (continued) 

Exact (Rosner Hybrid 
e d ( A k )  k ( e - o )  y et al 1984) k e , ( A , )  k 

0.6 -0.427 463 

1.0 -0.331 169 

6 -0.447 191 
7 -0.447 199 
8 -0.447203 

1 -0.423869 
2 -0.426256 
3 -0.426936 
4 -0.427 192 
5 -0.427307 
6 -0.427366 
7 -0.427399 
8 -0.427419 

1 -0.301 237 
2 -0.315773 
3 -0.321 825 
4 -0.324906 
5 -0.326682 
6 -0.327798 
7 -0.328544 
8 -0.329068 

14 -0.447209 
15 -0.447210 
16 -0.447210 

9 -0.427431 
10 -0.427439 
11 -0.427 445 
12 -0.427449 
13 -0.427452 
14 -0.427454 
15 -0.427456 
16 -0.427457 

9 -0.329450 
10 -0.329736 
11 -0.329 956 
12 -0.330129 
13 -0.330268 
14 -0.330382 
15 -0.330481 
16 -0.330589 

1 -0.427461 
2 -0.427462 
3 -0.427462 

1 -0.331 146 
2 -0.331 169 
3 -0.331 169 

t Exact result at y = 0.5 is that of c i i e k  and Vrscay (1982). Their Padt-Thiele extrapolation 
procedure also significantly improves the original Pad6 sequence. 

establish the convergence criteria and to precisely assess the domain of validity of the 
hybrid non-linear transformations. 
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